甲、乙两车同时从地出发,以各自的速度匀速向
地行驶.甲车先到达
地,停留1小时后按原路以另一速度匀速返回,直到两车相遇.乙车的速度为每小时60千米.下图是两车之间的距离
(千米)与乙车行驶时间
(小时)之间的函数图象.
(1)请将图中的( )内填上正确的值,并直接写出甲车从到
的行驶速度;
(2)求从甲车返回到与乙车相遇过程中与
之间的函数关系式,并写出自变量
的取值范围.
(3)求出甲车返回时行驶速度及、
两地的距离.
(本题8分)2010年上海世博会某展览馆展厅东面有两个入口A,B,南面、西面、北面各有一个出口,示意图如图所示.小华任选一个入口进入展览大厅,参观结束后任选一个出口离开. (1)她从进入到离开共有多少种可能的结果?(要求画出树状图)
(2)她从入口A进入展厅并从北出口或西出口离开的概率是多少?
(本题6分)解分式方程:
如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点 M处,点C落在点N处,MN与CD交于点P, 连接EP.
⑴如图②,若M为AD边的中点,①△AEM的周长=_____cm;②求证:EP=AE+DP;
⑵随着落点M在AD边上取遍所有的位置(点M不与A、D重合),△PDM的周长是否发生变化?请说明理由.
(本题13分)当Rt⊿的直角顶点P要正方形ABCD对角线AC上运动(P与A、C不重合)且一直角边始终过点D,另一直角边与射线BC交于点E,
(1)如图1,当点E与BC边相交时,①证明:⊿PBE为等腰三角形;
②写出线段AP、PC与EC之间的等量关系(不必证明)
(2)当点E在BC的延长线上时,请完成图2,并判断(1)中的①、②结论是否分别成立?若不成立,写出相应的结论(不必证明)
(12′)王华、张伟两位同学九年级10次数学单元自我检测的成绩(成绩均为整数,且个位数为0)分别如下图所示:
(1)根据上图中提供的数据填写下表:
平均成绩 |
中位数 |
众数 |
方差(S2) |
|
王华 |
80 |
|||
张伟 |
85 |
260 |
(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率高的同学是________.
(3)如果要从这两个同学选一位去参加数学竞赛,你可以给老师一些建议吗?