某班级共有60名学生,先用抽签法从中抽取部分学生调查他们的学习情况,若每位学生被抽到的概率为.
(1)求从中抽取的学生数;
(2)若抽查结果如下,先确定x,再完成频率分布直方图;
每周学习时间(小时) |
[0,10) |
[10,20) |
[20,30) |
[30,40] |
人数 |
2 |
4 |
x |
1 |
|
|
|
|
|
(3)估计该班学生每周学习时间的平均数(同一组中的数据用该组区间的中点值作代表).
已知.
(1)求函数的最大值;
(2)设,证明:
有最大值
,且
.
P为圆A:上的动点,点
.线段PB的垂直平分线与半径PA相交于点M,记点M的轨迹为Γ.
(1)求曲线Γ的方程;
(2)当点P在第一象限,且时,求点M的坐标.
如图,在斜三棱柱中,O是AC的中点,
平面
,
,
.
(1)求证:平面
;
(2)求二面角的余弦值.
甲、乙、丙三个车床加工的零件分别为350个,700个,1050个,现用分层抽样的方法随机抽取6个零件进行检验.
(1)从抽取的6个零件中任意取出2个,已知这两个零件都不是甲车床加工的,求其中至少有一个是乙车床加工的零件;
(2)从抽取的6个零件中任意取出3个,记其中是乙车床加工的件数为X,求X的分布列和期望.
在中,角
的对边分别为
,且
.
(1)求的值;
(2)若成等差数列,且公差大于0,求
的值.