已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点M(4,
)
(1)求双曲线方程;
(2)若点N(3、m)在双曲线上,求证:NF 1· NF2=0;
(3)求F1NF2的面积
、一个正三棱柱的底面边长是4,高是6,过下底面的一条边和该边所对的上底面的顶点作截面,求这个截面面积。
已知直线及定点P(3,-2)依下列条件求直线l1和l2的方程:
(1)l1过点P且l1// l;
(2)l2过点P且l2⊥l
如图所示,AB是圆O的直径,PA垂直于圆O所在平面,C是圆周上不同于A、B的任意一点,求证:平面PAC⊥平面PBC
设的外心为O,以线段OA、OB为邻边作平行四边形,第四个顶点为D,再以OC、OD为邻边作平行四边形,它的第四个顶点为H 。
(1)若用
;
(2)求证:;
(3)设中,
外接圆半径为R, 用
R表示.(外心是三角形外接圆的圆心)