设函数·
,其中向量
,
,
。
(1)求f (x)的最小正周期与单调递减区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,已知f (A) =2,b = 1,
△ABC的面积为,求△ABC 外接圆半径R的值。
已知是函数
的一个极值点,其中
.
(1)与
的关系式;
(2)求的单调区间;
(3)当时,函数
的图象上任意一点处的切线的斜率恒大于
,求
的取值范围.
在平面直角坐标系中,动点
到两点
、
的距离之和等于4.设点
的轨迹为
.
(1)求曲线的方程;
(2)设直线与
交于
、
两点,若
,求
的值.
如图,在直三棱柱中-A BC中,AB
AC, AB=AC=2,
=4,点D是BC的中点.
(1)求异面直线与
所成角的余弦值;
(2)求平面与
所成二面角的正弦值.
现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(1)求张同学至少取到1道乙类题的概率;
(2)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对每道甲类题的概率都是,答对每道乙类题的概率都是
,且各题答对与否相互独立.用
表示张同学答对题的个数,求
的分布列和数学期望.
已知等差数列的前
项和为
,
,
,
(1)求数列的通项公式;
(2)若,求数列
的前100项和.