如图,在平面直角坐标系中,半径为1的圆的圆心
在坐标原点,且与两坐标轴分别交于
四点.抛物线
与
轴交于点
,与直线
交于点
,且
分别与圆
相切于点
和点
.
(1)求抛物线的解析式;
(2)抛物线的对称轴交轴于点
,连结
,并延长
交圆
于
,求
的长.
(3)过点作圆
的切线交
的延长线于点
,判断点
是否在抛物线上,说明理由.
商场为了促销某件商品,设置了如图的一个转盘,它被分成了3个相同的扇形。各扇形分别标有数字2,3,4,指针的位置固定,该商品的价格由顾客自由转动此转盘两次来获取,每次转动后让其自由停止,记下指针所指的数字(指针指向两个扇形的交线时,当作右边的扇形),先记的数字作为价格的十位数字,后记的数字作为价格的个位数字,则顾客购买商品的价格不超过30元的概率是多少?
先化简,再求值,其中
已知A(1,)是反比例函数图象上的一点,直线AC经过点A及坐标原点且与反比例函数图象的另一支交于点C,求C的坐标及反比例函数的解析式。
(本小题满分10分)如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连结CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连结ND、BM,设OP=.
(1)求点M的坐标(用含的代数式表示);
(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由;
(3)当为何值时,四边形BNDM的面积最小.
(本小题满分10分)如图,顶点M在轴上的抛物线与直线
相交于A、B两点,且点A在
轴上,点B的横坐标为2,连结AM、BM.
(1)求抛物线的函数关系式;
(2)判断△ABM的形状,并说明理由;
(3)把抛物线与直线的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(
,
),当
满足什么条件时,平移后的抛物线总有不动点?