设椭圆的左、右焦点分别为,上顶点为,离心率为,在轴负半轴上有一点,且(Ⅰ)若过三点的圆恰好与直线相切,求椭圆C的方程;(Ⅱ)在(Ⅰ)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.
满足,椭圆的离心率短轴长为2,0为坐标原点. (1)求椭圆的方程; (2)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值; (3)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由
(Ⅰ)求证:数列{xn}是等比数列; (Ⅱ)设满足ys=,yt=(s,t∈N,且s≠t)共中a为常数,且1<a<,试判断,是否存在自然 数M,使当n>M时,xn>1恒成立?若存在,求出相应的M;若不存在,请说明理由
为上的点,且,. (Ⅰ)求证:平面; (Ⅱ)求证:平面; (Ⅲ)求三棱锥的体积
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号