为考虑广告费用x与销售额y之间的关系,抽取了5家餐厅,得到如下数据:
广告费用(千元) |
1.0 |
4.0 |
6.0 |
10.0 |
14.0 |
销售额(千元) |
19.0 |
44.0 |
40.0 |
52.0 |
53.0 |
(1)在同一张图上画散点图,直线(1)=24+2.5x,
(2)=
;
(2)比较所画直线与曲线,哪一条更能表现这组数据之间的关系?
(3)分别计算用直线方程与曲线方程得到在5个x点处的销售额预测值、预测值与实际预测之间的误差,最后比较两个误差绝对值之和的大小。
(本小题满分14分)已知函数
(1)曲线经过点P(1,2),且曲线C在点P处的切线平行于直线
,求a,b的值;
(2)在(1)的条件下试求函数的极小值;
(3)若在区间(1,2)内存在两个极值点,求证:
本小题满分14分)已知中,点A、B的坐标分别为
,点C在x轴上方。
(1)若点C坐标为,求以A、B为焦点且经过点C的椭圆的方程;
(2)过点P(m,0)作倾角为的直线
交(1)中曲线于M、N两点,若点Q(1,0)恰在以线段MN为直径的圆上,求实数m的值。
(本小题满分13分)已知数列中,
,前n项和为
(1)求数列的通项公式;
(2)设数列的前n项和为
,求满足不等式
的n值。
(本小题满分12分)某工厂生产一种产品的原材料费为每件40元,若用x表示该厂生产这种产品的总件数,则电力与机器保养等费用为每件0.05x元,又该厂职工工资固定支出12500元。
(1)把每件产品的成本费P(x)(元)表示成产品件数x的函数,并求每件产品的最低成本费;
(2)如果该厂生产的这种产品的数量x不超过3000件,且产品能全部销售,根据市场调查:每件产品的销售价Q(x)与产品件数x有如下关系:,试问生产多少件产品,总利润最高?(总利润=总销售额-总的成本)
本小题满分12分)已知函数为偶函数,其图象上相邻的两个最低点间的距离为
。
(1)求的解析式;
(2)若,求
的值。