已知为为双曲线
的两个焦点,焦距
,过左焦点
垂直于
轴的直线,与双曲线
相交于
两点,且
为等边三角形.
(1)求双曲线的方程;
(2)设为直线
上任意一点,过右焦点
作
的垂线交双曲线
与
两点,求证:直线
平分线段
(其中
为坐标原点);
(3)是否存在过右焦点的直线
,它与双曲线
的两条渐近线分别相交于
两点,且使得
的面积为
?若存在,求出直线
的方程;若不存在,请说明理由.
已知各项均不为零的数列的前
项和为
,且
,其中
.
(1)求证:成等差数列;
(2)求证:数列是等差数列;
(3)设数列满足
,且
为其前
项和,求证:对任意正整数
,不等式
恒成立.
已知函数和
的图像关于原点对称,且
(1)求函数的解析式;
(2)若在
上是增函数,求实数
的取值范围.
一个透明的球形装饰品内放置了两个公共底面的圆锥,且这两个圆锥的顶点和底面圆周都在这个球面上,如图,已知圆锥底面面积是这个球面面积的,设球的半径为
,圆锥底面半径为
.
(1)试确定与
的关系,并求出较大圆锥与较小圆锥的体积之比;
(2)求出两个圆锥的体积之和与球的体积之比.
已知,求
的值