某公园内有一椭圆形景观水池,经测量知,椭圆长轴长为20米,短轴长为16米,现以椭圆长轴所在直线为轴,短轴所在直线为
轴,建立平面直角坐标系,如图所示:
(1)为增加景观效果,拟在水池内选定两点安装水雾喷射口,要求椭圆上各点到这两点距离之和都相等,请指出水雾喷射口的位置(用坐标表示),并求椭圆的方程。
(2)为了增加水池的观赏性,拟划出一个以椭圆的长轴顶点A、短轴顶点B及椭圆上某点M构成的三角形区域进行夜景灯光布置,请确定点M的位置,使此三角形区域面积最大。
数列的前
项和为
,且
是
和
的等差中项,等差数列
满足
,
.
(1)求数列、
的通项公式;
(2)设,数列
的前
项和为
,证明:
.
如图,边长为2的正方形中,点
是
的中点,点
是
的中点,将△
、△
分别沿
、
折起,使
、
两点重合于点
,连接
,
.
(1)求证:;(2)求点
到平面
的距离.
某校高三有甲、乙两个班,在某次数学测试中,每班各抽取5份试卷,所抽取的平均得分相等(测试满分为100分),成绩统计用茎叶图表示如下:
甲 |
乙 |
|
9 8 |
8 |
4 8 9 |
2 1 0 |
9 |
![]() |
(1)求;
(2)学校从甲班的5份试卷中任取两份作进一步分析,在抽取的两份样品中,求至多有一份得分在之间的概率.
已知函数.
(1)求的最小正周期;(2)求
的对称中心.
已知实数组成的数组满足条件:
①;②
.
(Ⅰ)当时,求
,
的值;
(Ⅱ)当时,求证:
;
(Ⅲ)设,且
,求证:
.