游客
题文

如图,在平面直角坐标系中,A、B均在边长为1的正方形网格格点上.
(1)求线段AB所在直线的函数解析式,并写出当0≤y≤2时,自变量x的取值范围;
(2)将线段AB绕点B逆时针旋转90°,得到线段BC,请在下图中画出线段BC.若直线BC的函数解析式为y=kx+b,则y随x的增大而        __(填“增大”或“减小”).

科目 数学   题型 解答题   难度 较易
知识点: 一次函数的最值
登录免费查看答案和解析
相关试题

在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.
(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.
(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.
(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.

问题:在△ABC中,AB=AC,∠A=100°,BD为∠B 的平分线,探究AD、BD、BC之间的数量关系.
请你完成下列探究过程:
(1)观察图形,猜想AD、BD、BC之间的数量关系为.
(2)在对(1)中的猜想进行证明时,当推出∠ABC=∠C=40°后,可进一步推出∠ABD=∠DBC=度.
(3)为了使同学们顺利地解答本题(1)中的猜想,小强同学提供了一种探究的思路:在BC上截取BE=BD,连接DE,在此基础上继续推理可使问题得到解决.你可以参考小强的思路,画出图形,在此基础上对(1)中的猜想加以证明.也可以选用其它的方法证明你的猜想.

在平面直角坐标系xOy中,二次函数的图象经过(,0)和(,0)两点.
(1)求此二次函数的表达式.
(2)直接写出当<x<1时,y的取值范围.
(3)将一次函数 y=(1-m)x+2的图象向下平移m个单位后,与二次函数图象交点的横坐标分别是a和b,其中a<2<b,试求m的取值范围.

如图,定义:在Rt△ABC中,∠C =90°,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα=.
根据上述角的余切定义,解答下列问题:
(1)ctan60°=.
(2)求ctan15°的值.

如图, Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC边的中点,连接DE.
(1)求证:DE与⊙O 相切.
(2)若tanC=,DE=2,求AD的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号