(本小题满分12分)
甲乙两名射手互不影响地进行射击训练,根据以往的数据统计,他们设计成绩的分布列如下:
射手甲 |
射手乙 |
||||||
环数 |
8 |
9 |
10 |
环数 |
8 |
9 |
10 |
概率 |
![]() |
![]() |
![]() |
概率 |
![]() |
![]() |
![]() |
(Ⅰ)若甲乙两射手各射击两次,求四次射击中恰有三次命中10环的概率;
(Ⅱ)若两个射手各射击1次,记所得的环数之和为,求
的分布列和期望.
如图1,四棱锥中,
底面
,面
是直角梯形,
为侧棱
上一点.该四棱锥的俯视图和侧(左)视图如图2所示.
(1)证明:平面
;
(2)线段上是否存在点
,使
与
所成角的余弦值为
?若存在,找到所有符合要求的点
,并求
的长;若不存在,说明理由.
已知函数
(1)求的最小正周期和值域;
(2)在中,角
所对的边分别是
,若
且
,试判断
的形状.
袋中装有大小相同的2个白球和3个黑球.
(1)采取放回抽样方式,从中依次摸出两个球,求两球颜色不同的概率;
(2)采取不放回抽样方式,从中依次摸出两个球,记为摸出两球中白球的个数,
求的期望.
已知函数,
,其中
.
(1)若是函数
的极值点,求实数
的值;
(2)若对任意的(
为自然对数的底数)都有
≥
成立,求实数
的取值范围.
已知函数,曲线
在点
处的切线为
,若
时,
有极值.
(1)求的值;
(2)求在
上的最大值和最小值.