如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且,弦AD的延长线交切线PC于点E,连接BC.
(1)判断OB和BP的数量关系,并说明理由;
(2)若⊙O的半径为2,求AE的长.
某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取 进行调查,根据调查结果绘制了如图不完整的频数分布表和扇形统计图:
运动项目 |
频数(人数) |
羽毛球 |
30 |
篮球 |
a |
乒乓球 |
36 |
排球 |
b |
足球 |
12 |
请根据以上图表信息解答下列问题:
(1)频数分布表中的a= ,b= ;
(2)在扇形统计图中,“排球”所在的扇形的圆心角为 度;
(3)全校有多少名学生选择参加乒乓球运动?
如图,在矩形 中,对角线相交于点 , 为 的内切圆,切点分别为 , , , , .
(1)求 , ;
(2)点 从点 出发,沿线段 向点 以每秒3个单位长度的速度运动,当点 运动到点 时停止,过点 作 交 于点 ,设运动时间为 秒.
①将 沿 翻折得△ ,是否存在时刻 ,使点 恰好落在边 上?若存在,求 的值;若不存在,请说明理由;
②若点 为线段 上的动点,当 为正三角形时,求 的值.
如图,抛物线过点 和 ,顶点为 ,直线 与抛物线的对称轴 的交点为 , ,平行于 轴的直线 与抛物线交于点 ,与直线 交于点 ,点 的横坐标为 ,四边形 为平行四边形.
(1)求点 的坐标及抛物线的解析式;
(2)若点 为抛物线上的动点,且在直线 上方,当 面积最大时,求点 的坐标及 面积的最大值;
(3)在抛物线的对称轴上取一点 ,同时在抛物线上取一点 ,使以 为一边且以 , , , 为顶点的四边形为平行四边形,求点 和点 的坐标.
如图,在平面直角坐标系 中,一次函数的图象与反比例函数 的图象在第二象限交于 , 两点.
(1)当 时,求一次函数的解析式;
(2)若点 在 轴上,满足 ,且 ,求反比例函数的解析式.
如图, 内接于 ,点 在 外, , 交 于点 ,交 于点 , , , , .
(1)求证: ;
(2)求证:
是
的切线;
(3)求 的值.