(本小题满分15分)已知.
(1)如果函数的单调递减区间为
,求函数
的解析式;
(2)在(Ⅰ)的条件下,求函数的图像在点
处的切线方程;
(3)若不等式恒成立,求实数
的取值范围.
(本小题满分12分)某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率P与每日生产产品件数x(x∈N*)间的关系为P=,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%).
(Ⅰ)将日利润y(元)表示成日产量x(件)的函数;
(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值.
(本小题满分12分)设直线与椭圆
相交于
两个不同的点,与
轴相交于点
,记
为坐标原点.
(1)证明:
(2)若且
的面积及椭圆方程.
(本小题满分10分)已知命题p:函数在R上是减函数;命题q:在平面直角坐标系中,点
在直线
的左下方。若
为假,
为真,求实数
的取值范围
(本小题满分14分)
已知椭圆的离心率为
,短轴一个端点到右焦点的距离为
.
(1)求椭圆的方程;
(2)设直线与椭圆
交于
两点,坐标原点
到直线
的距离为
,求
面积的最大值.
(本小题满分12分)
如图所示,将一矩形花坛扩建成一个更大的矩形花坛
,要求
点在
上,
点在
上,且对角线
过点
,已知
米,
米.
(1)要使矩形的面积大于32平方米,则
的长应在什么范围内?
(2)当的长度为多少时,矩形花坛
的面积最小?并求出最小值.