已知数列,首项a 1 =3且2a n+1="S" n・S n-1 (n≥2).(1)求证:{}是等差数列,并求公差;(2)求{a n }的通项公式;(3)数列{an }中是否存在自然数k0,使得当自然数k≥k 0时使不等式a k>a k+1对任意大于等于k的自然数都成立,若存在求出最小的k值,否则请说明理由.
设x,y∈R,i,j为直角坐标平面内x,y轴正方向上的单位向量,若向量,b=xi+(y-2)j,且|a|+|b|=8. (1)求点M(x,y)的轨迹C的方程; (2)过点(0,3)作直线l与曲线C交于A、B两点,设是否存在这样的直线l,使得四边形OAPB为矩形?若存在,求出直线l的方程;若不存在,试说明理由.
如题15图,是抛物线上的动点,点在轴上,圆内切于,求面积的最小值.
解不等式.
已知函数的图像与直线有且仅有三个交点,交点的横坐标的最大值为,求证: .
设,.证明:当且仅当时,存在数列满足以下条件: (ⅰ),; (ⅱ)存在; (ⅲ),.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号