奔跑的狗
苏步青是我国著名数学家、教育家,历任复旦大家教授、校长等职.1995年当选为中国科学院学部委员.苏步青的主要研究领域是微分几何学,他又是优秀的教学教育家,从事数学教学达60年,培养了大批数学人才.
一次在德国,苏步青与一位有名的数学家同乘电车时,这位数学家出了一道题目给苏教授解答.
这道题是:
甲乙两人同时从相距100千米的两地出发,相向而行,甲每小时走6千米,乙每小时走4千米,甲带了一只狗和他同时出发,狗以每小时10千米的速度向乙奔去,遇到乙即回头向甲奔去;遇到甲又回头向乙奔去,直到甲乙两人相遇时狗才停住.问这只狗共奔跑了多少千米路?
对这个问题,苏步青教授略加思索,就算出了正确的答案.请你也想一想,该怎么解答?
已知:如图,△ABC中,∠CAB=90°,AC=AB,点D、E是BC上的两点,且∠DAE=45°,△ADC与△ADF关于直线AD对称.
(1)求证:△AEF≌△AEB;
(2)∠DFE= °.
操作题:
(1)已知:∠AOB,点M、N.
求作:①∠AOB的平分线OC;
②点P,在OC上,且PM=PN.(用尺规作图,保留作图痕迹,不写作法)
(2)如图,在3×3网格中,已知线段AB、CD,以格点为端点画一条线段,使它与AB、CD组成轴对称图形.(画出所有可能)
如图,点D在BC上,DE垂直平分AC,垂足为E,F是BA的中点.
求证:DF是AB的垂直平分线.
结合数轴与绝对值的知识回答下列问题:
(1)数轴上表示4和1的两点之间的距离是 ;表示-3和2两点之间的距离是 ;一般地,数轴上表示数m和数n的两点之间的距离等于.如果表示数a和-2的两点之间的距离是3,那么a= ;
(2)若数轴上表示数a的点位于-4与2之间,求+
的值;
(3)当a取何值时,+
+
的值最小,最小值是多少?请说明理由.
有一批水果,包装质量为每筐25千克,现抽取8筐样品进行检测,结果称重如下(单位:千克):27,24,23,28,21,26,22,27,为了求得8筐样品的总质量,我们可以选取的一个恰当的基准数进行简化运算.
(1)你认为选取的一个恰当的基准数为 ;
(2)根据你选取的基准数,用正、负数填写上表;
原质量 |
27 |
24 |
23 |
28 |
21 |
26 |
22 |
27 |
与基准数的差距 |
(3)这8筐水果的总质量是多少?