同时抛掷两颗骰子,求:
(1)点数之和是4的倍数的概率;
(2)点数之和大于5小于10的概率;
(3)点数之和大于3的概率.
设函数f(x)=ax2+(b﹣2)x+3(a≠0)
(1)若不等式f(x)>0的解集(﹣1,3).求a,b的值;
(2)若f(1)=2,a>0,b>0求+
的最小值.
已知命题p:“存在”,命题q:“曲线
表示焦点在x轴上的椭圆”,命题s:“曲线
表示双曲线”
(1)若“p且q”是真命题,求m的取值范围;
(2)若q是s的必要不充分条件,求t的取值范围.
已知函数f(x)=x2+xlnx.
(1)求f′(x);
(2)求函数f(x)图象上的点P(1,1)处的切线方程.
已知圆M:x2+(y﹣2)2=1,Q是x轴上的动点,QA、QB分别切圆M于A,B两点.
(1)若点Q的坐标为(1,0),求切线QA、QB的方程;
(2)求四边形QAMB的面积的最小值;
(3)若,求直线MQ的方程.
在直三棱柱ABC﹣A1B1C1中,BC=CC1,AB⊥BC.点M,N分别是CC1,B1C的中点,G是棱AB上的动点.
(Ⅰ)求证:B1C⊥平面BNG;
(Ⅱ)若CG∥平面AB1M,试确定G点的位置,并给出证明.