(本小题10分)如图,已知平行四边形ABCD和矩形ACEF所在的平面互相垂直,,
(1)求证:AC⊥BF;
(2)求点A到平面FBD的距离.
(本小题满分14分)设p:实数x满足,其中
,
实数
满足
(Ⅰ)若为真,求实数
的取值范围;
(Ⅱ)若p是q的必要不充分条件,求实数的取值范围.
(本小题满分14分) △ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=
,
,求边BC上的高.
在平面直角坐标系中,已知圆
和圆
.
(1)若直线过点
,且被圆
截得的弦长为
,求直线
的方程;
(2)在平面内是否存在一点,使得过点
有无穷多对互相垂直的直线
和
,它们分别与圆
和圆
相交,且直线
被圆
截得的弦长的
倍与直线
被圆
截得的弦长相等?若存在,求出所有满足条件的
点的坐标;若不存在,请说明理由.
某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表
商店名称 |
A |
B |
C |
D |
E E |
销售额(x)/千万元 |
3 |
5 |
6 |
7 |
9 9 |
利润额(y)/百万元 |
2 |
3 |
3 |
4 |
5 |
(1)画出销售额和利润额的散点图.(2)若销售额和利润额具有相关关系,用最小二乘法计算利润额y对销售额x的回归直线方程.
已知辆汽车通过某一段公路时的时速有如下关系:
时速区间 |
[40,50) |
[50,60) |
[60,70) |
[70,80) |
辆数 |
10 |
30 |
40 |
20 |
列出频率分布表;(2)列出频率分布直方图;(3)求中位数;(4)求平均数.