已知定义域为R,满足:①
;
②对任意实数,有
.
(Ⅰ)求,
的值;
(Ⅱ)判断函数的奇偶性与周期性,并求的值;
(Ⅲ)是否存在常数,使得不等式
对一切实数
成立.如果存在,求出常数
的值;如果不存在,请说明理由.
已知 ,函数 ,其中e=2.71828…为自然对数的底数.
(Ⅰ)证明:函数在
上有唯一零点;
(Ⅱ)记x0为函数在
上的零点,证明:
(ⅰ) ;
(ⅱ) .
如图,已知椭圆 ,抛物线 ,点 A是椭圆 与抛物线 的交点,过点 A的直线 l交椭圆 于点 B,交抛物线 于 M( B, M不同于 A).
(Ⅰ)若 ,求抛物线 的焦点坐标;
(Ⅱ)若存在不过原点的直线 l使 M为线段 AB的中点,求 p的最大值.
已知数列{an},{bn},{cn}中, .
(Ⅰ)若数列{bn}为等比数列,且公比 ,且 ,求q与an的通项公式;
(Ⅱ)若数列{bn}为等差数列,且公差 ,证明: .
如图,三棱台 DEF- ABC中,面 ADFC⊥面 ABC,∠ ACB=∠ ACD=45°, DC=2 BC.
(I)证明: EF⊥ DB;
(II)求 DF与面 DBC所成角的正弦值.
在锐角△ ABC中,角 A, B, C的对边分别为 a, b, c,且 .
(I)求角 B;
(II)求cos A+cos B+cos C的取值范围.