(本小题满分14分)
已知
(1)当时,求曲线
在点
处的切线方程;
(2)若在区间
上是增函数,求实数
的取值范围
;
(3)在(2)的条件下,设关于的方程
的两个根为
、
,若对任意
,
,不等式
恒成立,求
的取值范围.
已知数列中,
,
(Ⅰ)记,求证:数列
为等比数列;
(Ⅱ)求数列的前
项和
已知函数
(Ⅰ)求的最小正周期;
(Ⅱ)在△ABC中,角A,B,C所对的边分别是,
,
,若
且
,
试判断△ABC的形状.
某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
已知函数在点
处取得极小值-4,使其导数
的
的取值范围为
,求:
(1)的解析式;
(2),求
的最大值;
已知:A、B、C是的内角,
分别是其对边长,向量
,
,
.
(Ⅰ)求角A的大小;
(Ⅱ)若求
的长.