(本题14分)某校高二年级研究性学习小组,为了分析2011年我国宏观经济形势,上网查阅了2010年和2011年2-6月我国CPI同比(即当年某月与前一年同月相比)的增长数据(见下表),但2011年4,5,6三个月的数据(分别记为x,y,z)没有查到.有的同学清楚记得2011年2,3,4,5,6五个月的CPI数据成等差数列.
(1)求x,y,z的值;
(2)求2011年2-6月我国CPI的数据的方差;
(3)一般认为,某月CPI达到或超过3个百分点就已经通货膨胀,而达到或超过5个百分点则严重通货膨胀.现随机地从上表2010年的五个月和2011年的五个月的数据中各抽取一个数据,求相同月份2010年通货膨胀,并且2011年严重通货膨胀的概率.
附表:我国2010年和2011年2~6月的CPI数据(单位:百分点.注:1个百分点=1%)
年份 |
二月 |
三月 |
四月 |
五月 |
六月 |
2010 |
2.7 |
2.4 |
2.8 |
3.1 |
2.9 |
2011 |
4.9 |
5.0 |
x |
y |
z |
已知关于的不等式
在
上恒成立,求实数
的最小值;
已知函数.
(1)求的导数
;
(2)求证:不等式上恒成立;
(3)求的最大值。
在一次食品卫生大检查中,执法人员从抽样中得知,目前投放我市的甲、乙两种食品的合格率分别为和
。
(1)今有三位同学聚会,若每人分别从两种食品中任意各取一件,求恰好有一人取到两件都是不合格品的概率.
(2)若某消费者从两种食品中任意各购一件,设表示购得不合格食品的件数,试写出
的分布列,并求其数学期望.
已知数列为等差数列,且
.
为等比数列,数列
的前三项依次为3,7,13。求
(1)数列,
的通项公式;(2)数列
的前
项和
。
已知曲线的参数方程为
(
为参数),曲线
的极坐标方程为
.
(1)将曲线的参数方程化为普通方程,将曲线
的极坐标方程化为直角坐标方程;
(2)曲线,
是否相交,若相交请求出公共弦的长,若不相交,请说明理由。