已知函数的图象过点
,且点
在函数
的图象上.
(1)求数列的通项公式;
(2)令,若数列的前
项和为
,求证:
.
选修4-5:不等式选讲
已知函数.
(1)当时,解不等式
;
(2)若时,
,求
的取值范围.
已知曲线的参数方程为
为参数,
),直线
在参数方程是
为参数),曲线
与直线
有一个公共点在
轴上,以坐标原点为极点,
轴的正半轴为极轴建立极坐标系。
(1)求曲线的普通方程;
(2)若点在曲线
上,求
的值。
如图,是直角三角形,
.以
为直径的圆
交
于点
,点
是
边的中点.连结
交圆
于点
.
(Ⅰ)求证:、
、
、
四点共圆;
(Ⅱ )求证:
设函数,
.
(1) 若曲线在点
处的切线与直线
垂直,求
的单调递减区间和极小值(其中
为自然对数的底数);
(2)若对任意,
恒成立,求
的取值范围.