某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩(均为整数)分成六段,
…
后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求第四小组的频率,并补全频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分;
(3)从成绩是40~50分及90~100分的学生中选两人,记他们的成绩为x,y,求满足“”的概率.
如图,已知菱形的边长为
,
,
.将菱形
沿对角线
折起,使
,得到三棱锥
.
(Ⅰ)若点是棱
的中点,求证:
平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)设点是线段
上一个动点,试确定
点的位置,使得
,并证明你的结论
已知函数.
(Ⅰ)求函数的定义域;
(Ⅱ)若,求
的值
定义为有限项数列
的波动强度.
(Ⅰ)当时,求
;
(Ⅱ)若数列满足
,求证:
;
(Ⅲ)设各项均不相等,且交换数列
中任何相邻两项的位置,都会使数列的波动强度增加,求证:数列
一定是递增数列或递减数列
已知抛物线的焦点为
,过
的直线交
轴正半轴于点
,交抛物线于
两点,其中点
在第一象限.
(Ⅰ)求证:以线段为直径的圆与
轴相切;
(Ⅱ)若,
,
,求
的取值范围.
已知函数,其中
.
(Ⅰ)求函数的单调区间;
(Ⅱ)若直线是曲线
的切线,求实数
的值;
(Ⅲ)设,求
在区间
上的最大值.
(其中为自然对数的底数)