(本小题满分14分)某种商品的成本为5元/ 件,开始按8元/件销售,销售量为50件,为了获得最大利润,商家先后采取了提价与降价两种措施进行试销。经试销发现:销售价每上涨1元每天销售量就减少10件;而降价后,日销售量Q(件)与实际销售价x(元)满足关系:
|
[
已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:
(1)过定点A(﹣3,4);
(2)斜率为.
在△ABC中,已知点A(5,﹣2)、B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上.
(1)求点C的坐标;
(2)求直线MN的方程.
(1)求经过点A(﹣5,2)且在x轴上的截距等于在y轴上的截距的2倍的直线方程.
(2)过点A(8,6)引三条直线l1,l2,l3,它们的倾斜角之比为1:2:4,若直线l2的方程是y=x,求直线l1,l3的方程.
△ABC的三个顶点为A(﹣3,0),B(2,1),C(﹣2,3),求:
(1)BC所在直线的方程;
(2)BC边上中线AD所在直线的方程;
(3)BC边上的垂直平分线DE的方程.
如图,圆周上点A依逆时针方向做匀速圆周运动.已知A点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.