求与直线相切
圆心在直线
上且被
轴截得的弦长为
的圆的方程
求矩阵的特征值及对应的特征向量.
如图,圆O的直径AB=4,C为圆周上一点,BC=2,过C作圆O的切线l,过A作l的垂线AD,AD分别与直线l、圆O交于点D,E,求线段AE的长.
如图,AB是⊙O的直径,弦BD、CA的延长线相交于点E,EF垂直BA的延长线于点F.求证:
(1)∠AED=∠AFD;
(2)AB2=BE·BD-AE·AC.
已知数列{an}满足:a1=,an+1=
(n∈N*).
(1)求a2,a3的值;
(2)证明:不等式0<an<an+1对于任意n∈N*都成立.
设m,n∈N*,f(x)=(1+2x)m+(1+x)n.
(1)当m=n=2 011时,记f(x)=a0+a1x+a2x2+…+a2 011x2 011,求a0-a1+a2-…-a2 011;
(2)若f(x)展开式中x的系数是20,则当m,n变化时,试求x2系数的最小值.