已知函数的定义域为
,对于任意的
,都有
,且当
时,
,若
.
(1)求证:为奇函数;
(2)求证:是
上的减函数;
(3)求函数在区间
上的值域.
已知数列
的各项均为正数,
,
为自然对数的底数.
(Ⅰ)求函数
的单调区间,并比较
与
的大小;
(Ⅱ)计算
,由此推测计算
的公式,并给出证明;
(Ⅲ)令
,数列
,
的前
项和分别记为
, 证明:
.
一种作图工具如图1所示.
是滑槽
的中点,短杆
可绕
转动,长杆
通过
处铰链与
连接,
上的栓子
可沿滑槽
滑动,且
,
.当栓子
在滑槽
内作往复运动时,带动
绕
转动一周(
不动时,
也不动),
处的笔尖画出的曲线记为
.以
为原点,
所在的直线为
轴建立如图2所示的平面直角坐标系.
(Ⅰ)求曲线
的方程;
(Ⅱ)设动直线
与两定直线
和
分别交于
两点.若直线
总与曲线
有且只有一个公共点,试探究:
的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
某厂用鲜牛奶在某台设备上生产
两种奶制品.生产1吨
产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨
产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天
产品的产量不超过
产品产量的2倍,设备每天生产
两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量
(单位:吨)是一个随机变量,其分布列为
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利 (单位:元)是一个随机变量.
(Ⅰ)求
的分布列和均值;
(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.
《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.如图,在阳马
中,侧棱
底面
,且
,过棱
的中点
,作
交
于点
,连接
.
(Ⅰ)证明:
.试判断四面体
是否为鳖臑,若是,写出其每个面的直角(只需写出结论);若不是,说明理由;
(Ⅱ)若面
与面
所成二面角的大小为
,求
的值.
设等差数列
的公差为
,前
项和为
,等比数列
的公比为
.已知
.
(Ⅰ)求数列,
的通项公式;
(Ⅱ)当
时,记
,求数列
的前
项和
.