如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于
处时,乙船位于甲船的北偏西
方向的
处,此时两船相距
海里,当甲船航行
分钟到达
处时,乙船航行到甲船的北偏西
方向的
处,此时两船相距
海里,问乙船每小时航行多少海里?(结论保留根号形式)
设函数。
(1)若,求
的单调区间;
(2)若当时,
,求a的取值范围。
设的公差大于零的等差数列,已知
,
.
(1)求的通项公式;
(2)设是以函数
的最小正周期为首项,以
为公比的等比数列,求数列
的前
项和
.
某普通高中共有教师人,分为三个批次参加研修培训,在三个批次中男、女教师人数如下表所示:
第一批次 |
第二批次 |
第三批次 |
|
女教师 |
![]() |
![]() |
![]() |
男教师 |
![]() |
![]() |
![]() |
已知在全体教师中随机抽取1名,抽到第二、三批次中女教师的概率分别是、
.
(1)求的值;
(2)为了调查研修效果,现从三个批次中按的比例抽取教师进行问卷调查,三个批次被选取的人数分别是多少?
(3)若从(2)中选取的教师中随机选出两名教师进行访谈,求参加访谈的两名教师“分别来自两个批次”的概率.
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB.
(1)求证:CE⊥平面PAD;
(2)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积.
给定抛物线,
是抛物线
的焦点,过点
的直线
与
相交于
、
两点,
为坐标原点.
(1)设的斜率为1,求以
为直径的圆的方程;
(2)设,求直线
的方程.