某牛奶加工厂有鲜奶吨.若在市场上直接销售鲜奶,每吨可获取利润
元;制成酸奶销售,每吨可获取利润
元;制成奶片销售,每吨可获取利润
元.
该工厂的生产能力是:如制成酸奶,每天可加工吨;制成奶片每天可加工
吨.受人员限制,两种加工方式不可同时进行.受气温条件限制,这批牛奶必须在
天内全部销售或加工完毕.为此,该厂设计了两种可行方案:
方案一:尽可能多的制成奶片,其余直接销售鲜牛奶;
方案二:将一部分制成奶片,其余制成酸奶销售,并恰好天完成.
你认为选择哪种方案获利最多,为什么?
已知有两张全等的矩形纸片。
(1)将两张纸片叠合成如图甲,请判断四边形的形状,并说明理由;
(2)设矩形的长是6,宽是3.当这两张纸片叠合成如图乙时,菱形的面积最大,求此时菱形的面积.
甲、乙两人在相同条件下各射靶10次,每次射靶的成绩情况如左图所示:
平均数 |
中位数 |
命中9环以上(含9环)的次数 |
||
甲 |
7 |
|||
乙 |
7 |
|||
(1)请填写右表;
(2)请从下列三个不同的角度对测试结果进行分析:
①从平均数和中位数结合看(谁的成绩好些);
②从平均数和9环以上的次数看(谁的成绩好些);
③从折线图上两人射击环数的走势看(分析谁更有潜力).
已知一次函数y=kx+b的图像经过点(-1,-5),且与正比例函数的图像相交于点(2,m).
求:(1)m的值;
(2)一次函数y=kx+b的解析式;
(3)这两个函数图像与x轴所围成的三角形面积.
如图,点B、E、C、F在同一直线上,AB=DE,∠B=∠DEF,BE=CF.
请说明:(1)△ABC≌△DEF;(2)四边形ACFD是平行四边形.
如图所示,每个小方格都是边长为1的正方形,以O点为坐标原点建立平面直角坐标系.
(1)画出四边形OABC关于y轴对称的四边形OA1B1C1,并写出点B1的坐标是.
(2)画出四边形OABC绕点O顺时针方向旋转90°后得到的四边形OA2B2C2;连结OB,求出OB旋转到OB2所扫过部分图形的面积.