设P,Q,R,S四人分比获得1——4等奖,已知:
(1)若P得一等奖,则Q得四等奖;
(2)若Q得三等奖,则P得四等奖;
(3)P所得奖的等级高于R;
(4)若S未得一等奖,则P得二等奖;
(5)若Q得二等奖,则R不是四等奖;
(6)若Q得一等奖,则R得二等奖。
问P,Q,R,S分别获得几等奖?
已知,
是一次函数,并且点
在函数
的图象上,点
在函数
的图象上,求
的解析式
.(本小题满分10分)
如图,已知梯形ABCD中,AD∥BC,,AD=a,BC=2a,
,在平面ABCD内,过C作
,以
为轴将梯形ABCD旋转一周,求所得旋转体的表面积及体积。
(本小题满分12分)
已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线,使得
和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当
的面积最大时点P的坐标.
. (本小题满分12分)
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(1)求证:BD⊥平面PAC;
(2)若PA=AB,求PB与AC所成角的余弦值;
(3)当平面PBC与平面PDC垂直时,求PA的长.
(本小题满分12分)
椭圆的一个焦点
与抛物线
的焦点重合,且截抛物线的准线所得弦长为
,倾斜角为
的直线
过点
.
(1)求该椭圆的方程;
(2)设椭圆的另一个焦点为,问抛物线
上是否存在一点
,使得
与
关于直线
对称,若存在,求出点
的坐标,若不存在,说明理由.