(10分)如图所示,倾角为30°的光滑斜面的下端有一水平传送带,传送带正以6 m/s的速度运动,运动方向如图所示.一个质量为2 kg的物体(物体可以视为质点),从h="3.2" m高处由静止沿斜面下滑,物体经过A点时,不管是从斜面到传送带还是从传送带到斜面,都不计其动能损失.物体与传送带间的动摩擦因数μ=0.5,物体向左最多能滑到传送带左右两端AB的中点处,则
(1)物体由静止沿斜面下滑到斜面末端需要多少时间?
(2)传送带左右两端AB间的距离l为多少?
(3)上述过程中物体与传送带组成的系统产生的摩擦热为多少?
(4)物体随传送带向右运动,最后沿斜面上滑的最大高度h′为多少?
一物块以一定的初速度沿斜面向上滑出,利用速度传感器可以在计算机屏幕上得到其速度大小随时间的变化关系图象如图所示,重力加速度g取10 m/s2.求:物块向上滑行的最大距离
;
斜面的倾角
及物块与斜面间的动摩擦因数
.
如图为某种鱼饵自动投放器中的投饵管装置示意图,其下半部AB是一长为2R的竖直细管,上半部BC是半径为R的四分之一圆弧弯管,管口沿水平方向,AB管内有一原长为R、下端固定的轻质弹簧。投饵时,每次总将弹簧长度压缩到0.5R后锁定,在弹簧上段放置一粒鱼饵,解除锁定,弹簧可将鱼饵弹射出去。设质量为m的鱼饵到达管口C时,对管壁的作用力恰好为零。不计鱼饵在运动过程中的机械能损失,且锁定和解除锁定时,均不改变弹簧的弹性势能。已知重力加速度为g。求:质量为m的鱼饵到达管口C时的速度大小v1;
弹簧压缩到0.5R时的弹性势能Ep;
已知地面与水面相距1.5R,若使该投饵管绕AB管的中轴线OO-。在
角的范围内来回缓慢转动,每次弹射时只放置一粒鱼饵,鱼饵的质量在
到m之间变化,且均能落到水面。持续投放足够长时间后,鱼饵能够落到水面的最大面积S是多少?
如图,一上端开口,下端封闭的细长玻璃管,下部有长l1=66cm的水银柱,中间封有长l2=6.6cm的空气柱,上部有长l3=44cm的水银柱,此时水银面恰好与管口平齐。已知大气压强为Po=76cmHg。如果使玻璃管绕低端在竖直平面内缓慢地转动一周,求在开口向下和转回到原来位置时管中空气柱的长度。封入的气体可视为理想气体,在转动过程中没有发生漏气。
如图所示,以A、B和C、D为端点的两半圆形光滑轨道固定于竖直平面内,一滑板静止在光滑水平地面上,左端紧靠B点,上表面所在平面与两半圆分别相切于B、C。一物块被轻放在水平匀速运动的传送带上E点,运动到A时刚好与传送带速度相同,然后经A沿半圆轨道滑下,再经B滑上滑板。滑板运动到C时被牢固粘连。物块可视为质点,质量为m,滑板质量M=2m,两半圆半径均为R,板长l =6.5R,板右端到C的距离L=5R,E距A为S=5R,物块与传送带、物块与滑板间的动摩擦因素均为μ=0.5,重力加速度取g.求物块滑到B点的速度大小;
分析物块从B点滑上滑板后,能否从滑板上滑落到水平地面;
分析滑块到达C点时的动能能否使滑块沿CD轨道滑到CD轨道的中点。
一劲度系数k = 800N/m的轻质弹簧两端分别连接着质量均为12kg的物体A、B,将他们竖直静止在水平面上,如图16所示,现将一竖直向上的变力F作用A上,使A开始向上做匀加速运动,经0.4s物体B刚要离开地面,求:(设整个过程弹簧都在弹性限度内,取g = 10m/s2)此过程中所加外力F的最大值和最小值;
此过程中力F所做的功。