(1)如图,AD是△ABC的中线,AB=8,AC=6则AD的取值范围是( )
A.6<AD<8 | B.6≤AD≤8 | C.1<AD<7 | D.1≤AD≤7 |
(2)在(1)问的启发下,解决下列问题:
如图,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BF
将一副标准的直角三角尺如图放置,已知AE∥BC,求∠AFD的度数.
如下图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.
(1)请在图中画出平移后的△A′B′C′,
(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC的面积。
因式分解
(1) x3+2x2y+xy2
(2)m2(m-1)+4(1-m)
化简求值
已知:(x+a)(x-)的结果中不含关于字母的一次项,求
的值
巳知二次函数y=a(x2-6x+8)(a>0)的图象与x轴分别交于点A、B,与y轴交于点C.点D是抛物线的顶点.
(1)如图①.连接AC,将△OAC沿直线AC翻折,若点O的对应点0'恰好落在该抛物线的对称轴上,求实数a的值;
(2)如图②,在正方形EFGH中,点E、F的坐标分别是(4,4)、(4,3),边HG位于边EF的右侧.小林同学经过探索后发现了一个正确的命题:“若点P是边EH或边HG上的任意一点,则四条线段PA、PB、PC、PD不能与任何一个平行四边形的四条边对应相等(即这四条线段不能构成平行四边形).“若点P是边EF或边FG上的任意一点,刚才的结论是否也成立?请你积极探索,并写出探索过程;
(3)如图②,当点P在抛物线对称轴上时,设点P的纵坐标l是大于3的常数,试问:是否存在一个正数a,使得四条线段PA、PB、PC、PD与一个平行四边形的四条边对应相等(即这四条线段能构成平行四边形)?请说明理由.