已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB =" ∠EDF" = 90°,∠DEF = 45°,AC =" 8" cm,BC =" 6" cm,EF =" 9" cm.
如图(2),△DEF从图(1)的位置出发,以1 cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以2 cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上?
(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若不存在,说明理由.
(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若不存在,说明理由.(图(3)供同学们做题使用)
如图,在平面直角坐标系中,抛物线 交 轴于 、 两点 在 的左侧),且 , ,与 轴交于 ,抛物线的顶点坐标为 .
(1)求 、 两点的坐标;
(2)求抛物线的解析式;
(3)过点 作直线 轴,交 轴于点 ,点 是抛物线上 、 两点间的一个动点(点 不与 、 两点重合), 、 与直线 分别交于点 、 ,当点 运动时, 是否为定值?若是,试求出该定值;若不是,请说明理由.
如图, 是 的弦,过 的中点 作 ,垂足为 ,过点 作直线 交 的延长线于点 ,使得 .
(1)求证: 是 的切线;
(2)若 , ,求 的面积.
如图,在 中, , 、 分别是边 、 的中点,过点 作 交 的延长线于点 ,连接 .
(1)求证:四边形 是菱形;
(2)若四边形 的面积为24, ,求 的长.
某自行车经销商计划投入7.1万元购进100辆 型和30辆 型自行车,其中 型车单价是 型车单价的6倍少60元.
(1)求 、 两种型号的自行车单价分别是多少元?
(2)后来由于该经销商资金紧张,投入购车的资金不超过5.86万元,但购进这批自行车的总数不变,那么至多能购进 型车多少辆?
如图,一艘游轮在 处测得北偏东 的方向上有一灯塔 .游轮以 海里 时的速度向正东方向航行2小时到达 处,此时测得灯塔 在 处北偏东 的方向上,求 处与灯塔 相距多少海里?(结果精确到1海里,参考数据: ,