如图1,将三角板放在正方形上,使三角板的直角顶点
与正方形
的顶点
重合,三角扳的一边交
于点
.另一边交
的延长线于点
.
(1)求证:;
(2)如图2,移动三角板,使顶点始终在正方形
的对角线
上,其他条件不变,题(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:
(3)如图3,将(2)中的“正方形”改为“矩形
”,且使三角板的一边经过点
,其他条件不变,若
,求
的值.
如图,点B和点C分别为∠MAN两边上的点,AB=AC.
(1)按下列语句画出图形:(要求不写作法,保留作图痕迹)
① AD⊥BC,垂足为D;② ∠BCN的平分线CE与AD的延长线交于点E;③ 连结BE.
(2)在完成(1)后不添加线段和字母的情况下,请你写出除△ABD≌△ACD外的两对全等三角形:
≌,≌;并选择其中的一对全等三角形予以证明.
△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.
(1)作出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)作出△ABC关于y对称的△A2B2C2,并写出点C2的坐标.
如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.
一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是多少?
如图,直线:
分别与
轴、
轴交于A、B两点,点C线段AB上,作CD⊥x轴于D, CD="2OD," 点E线段OB上,且AE=BE;
(1)填空:点C的坐标为(,);点E的坐标为(,);
(2)直线过点E,且将△AOB分成面积比为1:2的两部分,求直线
的表达式;
(3)点P在x轴上运动,
①当PC+PE取最小值时,求点P的坐标及PC+PE的最小值;
②当PC-PE取最大值时,求点P的坐标及PC-PE的最大值;