(本小题满分12分)
现对某市工薪阶层关于“楼市限购令”的态度进行调查,随机抽调了50人,他们月收入的频数分布及对楼市“楼市限购令”赞成人数如下表.
月收入(单位百元) |
[15,25![]() |
[25,35![]() |
[35,45![]() |
[45,55![]() |
[55,65![]() |
[65,75![]() |
频数 |
5 |
10 |
15 |
10 |
5 |
5 |
赞成人数 |
4 |
8 |
12 |
5 |
2 |
1 |
(Ⅰ)由以上统计数据填下面2乘2列联表并问是否有99%的把握认为“月收入以5500为分界点对“楼市限购令” 的态度有差异;
|
月收入不低于55百元的人数 |
月收入低于55百元的人数 |
合计 |
赞成 |
![]() |
![]() |
|
不赞成 |
![]() |
![]() |
|
合计 |
|
|
|
(Ⅱ)若对在[15,25) ,[25,35)的被调查中各随机选取两人进行追踪调查,记选中的4人中不赞成“楼市限购令”人数为 ,求随机变量
的分布列及数学期望.
(本小题满分7分)选修4-5:不等式选讲
已知且
,若
恒成立,
(1)求的最小值;
(2)若对任意的
恒成立,求实数
的取值范围.
(本小题满分7分)选修4—4:坐标系与参数方程
在直角坐标系中,直线
的方程为
,曲线
的参数方程为
.
(1)已知在极坐标系(与直角坐标系取相同的长度单位,且以原点
为极点,以
轴正半轴为极轴)中,点
的极坐标为
,判断点
与直线
的位置关系;
(2)设点是曲线
上的一个动点,求它到直线
的距离的最小值.
(本小题满分7分)选修4-2:矩阵与变换
已知矩阵.
(1)求的逆矩阵
;
(2)求矩阵的特征值
、
和对应的一个特征向量
、
.
(本小题满分14分)已知函数的导函数是
,
在
处取得极值,且
,
(1)求的极大值和极小值;
(2)记在闭区间
上的最大值为
,若对任意的
总有
成立,求
的取值范围;
(Ⅲ)设是曲线
上的任意一点.当
时,求直线OM斜率的最小值,据此判断
与
的大小关系,并说明理由.
(本小题满分13分)某市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用地区域近似地为半径是R的圆面.该圆面的内接四边形是原棚户建筑用地,测量可知边界
万米,
万米,
万米.
(1)请计算原棚户区建筑用地的面积及圆面的半径
的值;
(2)因地理条件的限制,边界、
不能变更,而边界
、
可以调整,为了提高棚户区改造建筑用地的利用率,请在圆弧
上设计一点
;使得棚户区改造的新建筑用地
的面积最大,并求最大值.