为落实校园“阳光体育”工程,某校计划购买篮球和排球共20个.已知篮球每个80元,排球每个60元.设购买篮球x个,购买篮球和排球的总费用y元.
(1)求y与x之间的函数关系式;
(2)如果要求篮球的个数不少于排球个数的3倍,应如何购买,才能使总费用最少?最少费用是多少元?
如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线l,过点B作l的垂线BD,垂足为D,BD与⊙O交于点 E.
(1). 求∠AEC的度数;
(2). 求证:四边形OBEC是菱形.
解不等式组:,并将其解集在数轴上表示出来.
如图,两点在函数
的图象上.
(1). 求的值及直线
的解析式
(2). 如果一个点的横、纵坐标均为整数,那么我们称这个点是格点,请直接写出图中阴影部分(不包括边界)所含格点的个数.
先化简,再求值:,其中
.
(本题14分)如图,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,动点P从点C出发沿CD方向向点D运动,动点Q同时以相同速度从点D出发沿DA方向向终点A运动,其中一个动点到达端点时,另一个动点也随之停止运动.
(1)求AD的长;
(2)设CP=x, △PDQ的面积为y,求y关于x的函数表达式,并求自变量的取值范围;
(3)探究:在BC边上是否存在点M使得四边形PDQM是菱形?若存在,请找出点M,并求出BM的长;不存在,请说明理由.
![]() |