已知平面直角坐标系
中O是坐标原点,
,圆
是
的外接圆,过点(2,6)的直线为
。
(1)求圆
的方程;
(2)若
与圆相切,求切线方程;
(3)若
被圆所截得的弦长为
,求直线
的方程。
(本小题满分12分)
在
中,
分别是角A、B、C的对边,且
(1)求角B的大小;
(2)若
,求
的面积.
已知数列{an}的前n项和
,
(1)求数列{an}的通项公式;
(2)求前n项和
的最大值,并求出相应的
的值.
(本小题满分12分)
在△ABC中,已知
,c=1,
,求A ,C, a.
已知
是定义在
上的奇函数,当
时,
(1)求
的解析式;
(2)是否存在负实数
,使得当
的最小值是4?如果存在,求出
的值;如果不存在,请说明理由.
(3)对
如果函数
的图像在函数
的图像的下方,则称函数
在D上被函数
覆盖.求证:若
时,函数
在区间
上被函数
覆盖.
为了保护环境,某工厂在政府部门的支持下,进行技术改进: 把二氧化碳转化为某种化工产品,经测算,该处理成本
(万元)与处理量
(吨)之间的函数关系可近似地表示为:
, 且每处理一吨二氧化碳可得价值为
万元的某种化工产品.
(Ⅰ)当
时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?
(Ⅱ) 当处理量为多少吨时,每吨的平均处理成本最少.