(本小题满分12分)
设函数.
(1)求函数的单调递增区间;
(2)若关于的方程
在区间
内恰有两个相异的实根,求实数
的取值范围.
已知函数,等比数列
的前n项和为
,数列
的前n项为
,且前n项和
满足
.
(1)求数列和
的通项公式:
(2)若数列前n项和为
,问使
的最小正整数n是多少?
已知椭圆的一个顶点为B(0,4),离心率
,直线
交椭圆于M,N两点.
(1)若直线的方程为y=x-4,求弦MN的长:
(2)如果BMN的重心恰好为椭圆的右焦点F,求直线
的方程.
如图,在四棱锥P-ABCD中,侧面PAD底面ABCD,侧棱
,底面ABCD为直角梯形,其中BC//AD,AB
AD,AD=2,AB=BC=l,E为AD中点.
(1)求证:PE平面ABCD:
(2)求异面直线PB与CD所成角的余弦值:
(3)求平面PAB与平面PCD所成的二面角.
某超市在节日期间进行有奖促销,凡在该超市购物满200元的顾客,将获得一次摸奖机会,规则如下:
奖盒中放有除颜色外完全相同的1个红色球,1个黄色球,1个蓝色球和1个黑色球.顾客不放回的每次摸出1个球,直至摸到黑色球停止摸奖.规定摸到红色球奖励10元,摸到黄色球或蓝色球奖励5元,摸到黑色球无奖励.
(1)求一名顾客摸球3次停止摸奖的概率;
(2)记X为一名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.
己知A、B、C分别为△ABC的三边a、b、c所对的角,向量,且
.
(1)求角C的大小:
(2)若sinA,sinC,sinB成等差数列,且,求边c的长.