某超市在节日期间进行有奖促销,凡在该超市购物满200元的顾客,将获得一次摸奖机会,规则如下:
奖盒中放有除颜色外完全相同的1个红色球,1个黄色球,1个蓝色球和1个黑色球.顾客不放回的每次摸出1个球,直至摸到黑色球停止摸奖.规定摸到红色球奖励10元,摸到黄色球或蓝色球奖励5元,摸到黑色球无奖励.
(1)求一名顾客摸球3次停止摸奖的概率;
(2)记X为一名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.
(本小题满分14分)已知圆C:
(1)将圆C的方程化成标准方程并指出圆心C的坐标及半径的大小;
(2)过点引圆C的切线,切点为A,求切线长
;
(3)求过点的圆C的切线方程;
(本小题满分12分)若圆与圆
交点为A,B,求:(1) 线段AB的垂直平分线方程.
(2) 线段AB所在的直线方程.
(3) 求AB的长.
选修4—5:不等式选讲
已知,若不等式
恒成立,求实数
的取值范围.
选修4-1:几何证明选讲
如图,已知,过顶点
的圆与边
切于
的中点
,与边
分别交于点
,且
,点
平分
.求证:
.
四、选做题(本小题满分10分。请考生22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分)
22.选修4—4:坐标系与参数方程
求直线(
)被曲线
所截的弦长.