游客
题文

某超市在节日期间进行有奖促销,凡在该超市购物满200元的顾客,将获得一次摸奖机会,规则如下:
奖盒中放有除颜色外完全相同的1个红色球,1个黄色球,1个蓝色球和1个黑色球.顾客不放回的每次摸出1个球,直至摸到黑色球停止摸奖.规定摸到红色球奖励10元,摸到黄色球或蓝色球奖励5元,摸到黑色球无奖励.
(1)求一名顾客摸球3次停止摸奖的概率;
(2)记X为一名顾客摸奖获得的奖金数额,求随机变量X的分布列和数学期望.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

S n 为数列 { a n } 的前 n 项和.已知 a n > 0 a n 2 + 2 a n = 4 S n + 3 .
(Ⅰ)求 { a n } 的通项公式;
(Ⅱ)设 b n = 1 a n a n - 1 ,求数列 { b n } 的前 n 项和.

已知函数 f ( x ) = 4 x - x 2 , x R .

(Ⅰ)求 f ( x ) 的单调区间;
(Ⅱ)设曲线 y = f ( x ) x 轴正半轴的交点为 P ,曲线在点 P 处的切线方程为 y = g ( x ) ,求证:对于任意的正实数 x ,都有 f ( x ) g ( x ) ;
(Ⅲ)若方程 f ( x ) = a ( a 为实数)有两个正实数根 x 1 , x 2 x 1 < x 2 ,求证: x 2 - x 1 < - a 3 + 4 1 3 .

已知椭圆 x 2 a 2 + y 2 b 2 = 1 a > b > 0 的上顶点为 B ,左焦点为 F ,离心率为 5 5 ,
(Ⅰ)求直线 B F 的斜率;
(Ⅱ)设直线 B F 与椭圆交于点 P ( P 异于点 B ),过点 B 且垂直于 B P 的直线与椭圆交于点 Q Q 异于点 B )直线 P Q y 轴交于点 M , P M = l M Q .
(ⅰ)求 l 的值;
(ⅱ)若 P M sin B Q P = 7 5 9 ,求椭圆的方程.

如图,已知 A A 1 平面 A B C , B B 1 / / A A 1 , A B = A C = 3 B C = 2 5 , A A 1 = 7 , B B 1 = 2 7 ,点 E , F 分别是 B C , A 1 C 的中点.
image.png

(Ⅰ)求证: E F / / 平面 A 1 B 1 B A ;
(Ⅱ)求证:平面 A E A 1 平面 B C B 1 .
(Ⅲ)求直线 A 1 B 1 &#xa0;与平面 B C B 1 所成角的大小.

A B C 中,内角 A , B , C 所对的边分别为 a , b , c ,已知 A B C 的面积为 3 15 , b - c = 2 , cos A = - 1 4 .
(Ⅰ)求 a sin C 的值;
(Ⅱ)求 cos ( 2 A + π 6 ) &#xa0;的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号