双曲线的离心率为2,坐标原点到直线AB的距离为
,其中A
,B
.
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在轴正半轴上的端点,过B1作直线与双曲线交于
两点,求
时,直线
的方程.
(本小题满分12分)
已知函数一个周期的图象如图所示. (1)求函数
的表达式;(2)若
,且A为△ABC的一个内角,求:
的值.
(本小题满分14分)设不等式组所表示的平面区域为
,记
内的格点(格点即横坐标和纵坐标均为整数的点)个数为
(1)求的值及
的表达式;(2)记
,试比较
的大小;若对于一切的正整数
,总有
成立,求实数
的取值范围;
(3)设为数列
的前
项的和,其中
,问是否存在正整数
,使
成立?若存在,求出正整数
;若不存在,说明理由.
(本小题满分14分)已知椭圆的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作
,其中圆心P的坐标为
.(1) 若FC是
的直径,求椭圆的离心率;(2)若
的圆心在直线
上,求椭圆的方程.
为赢得2010年广州亚运会的商机,某商家最近进行了新科技产品的市场分析,调查显示,新产品每件成本9万元,售价为30万元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:万元,
)的平方成正比,已知商品单价降低2万元时,一星期多卖出24件.(1)将一个星期的商品销售利润表示成
的函数;
(2)如何定价才能使一个星期的商品销售利润最大?
(本题12分)如图所示,在直四棱柱中,
,点
是棱
上一点.
(1)求证:面
;
(2)求证:;