双曲线的离心率为2,坐标原点到直线AB的距离为
,其中A
,B
.
(1)求双曲线的方程;
(2)若B1是双曲线虚轴在轴正半轴上的端点,过B1作直线与双曲线交于
两点,求
时,直线
的方程.
已知角A、B、C是的三个内角,若向量
,
,且
.
(1) 求的值;
(2) 求的最大值.
已知各项都不相等的等差数列的前6项和为60,且
为
和
的等比中项.
(1) 求数列的通项公式;
(2) 若数列满足
,且
,求数列
的前
项和
.
某地政府为科技兴市,欲在如图所示的矩形ABCD的非农业用地中规划出一个高科技工业园区(如图中阴影部分),形状为直角梯形QPRE(线段EQ和RP为两个底边),已知其中AF是以A为顶点、AD为对称轴的抛物线段.试求该高科技工业园区的最大面积.
请您设计一个帐篷,它下部的形状是高为1m正六棱柱,上部的形状是侧棱长为3m的正六棱锥(如图所示)。试问当帐篷的顶点O到底面中心O1的距离为多少时,帐篷的体积最大?
如图,四边形ABCD为矩形,AD 平面ABE,AE=EB=BC=2,F为CE上的点.且BF
平面ACE.
(1)求证:平面ADE平面BCE;
(2)求四棱锥E-ABCD的体积;
(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN平面DAE.