(本小题满分12分) 已知椭圆E:=1(a>b>o)的离心率e=
,且经过点(
,1),O为坐标原点。
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.
(本小题满分12分)如图,在四棱锥中,
平面
,
,四边形
满足
,
且
,点
为
中点,点
为
边上的动点,且
.
(1)求证:平面平面
;
(2)是否存在实数,使得二面角
的余弦值为
?若存在,试求出实数
的值;若不存在,说明理由.
(本小题满分12分)如图所示,在四边形中,
,且
,
,
.
(1)求的面积;
(2)若,求
的长.
选修4—5:不等式选讲
已知函数,
.
(Ⅰ)当时,求不等式
的解集;
(Ⅱ)设,且当
时,
,求a的取值范围.
已知曲线是动点
到两个定点
、
距离之比为
的点的轨迹。
(1)求曲线的方程;(2)求过点
与曲线
相切的直线方程。
选修4-1:几何证明选讲
如图,在中,
,以
为直径的圆
交
于点
,点
是
边的中点,连接
交圆
于点
.
(Ⅰ)求证:是圆
的切线;
(Ⅱ)求证:.