(本小题满分12分) 已知椭圆E:=1(a>b>o)的离心率e=
,且经过点(
,1),O为坐标原点。
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)圆O是以椭圆E的长轴为直径的圆,M是直线x=-4在x轴上方的一点,过M作圆O的两条切线,切点分别为P、Q,当∠PMQ=60°时,求直线PQ的方程.
已知).
(1)若时,求函数
在点
处的切线方程;
(2)若函数在
上是减函数,求实数
的取值范围;
(3)令是否存在实数
,当
是自然对数的底)时,函数
的最小值是
.若存在,求出
的值;若不存在,说明理由.
已知向量,
,且
.
(1)求点的轨迹
的方程;
(2)设曲线与直线
相交于不同的两点
,又点
,当
时,求实数
的取值范围.
在数列中,已知
,
,
.
(1)求数列的通项公式;
(2)设数列,求
的前
项和
.
如图,四边形PCBM是直角梯形,,
,
,
.又
,
,
,直线
与直线
所成的角为60°.
(1)求证:;
(2)求三棱锥的体积.
设函数(
),其图象的两个相邻对称中心的距离为
.
(1)求函数的解析式;
(2)若△的内角为
所对的边分别为
(其中
),且
,
,
面积为
,求
的值.