如图,椭圆和圆
,已知圆
将椭圆
的长轴三等分,且圆
的面积为
,椭圆
的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线
与圆
相交于点A、B,直线EA、EB与椭圆
的另一个交点分别是点P、M.
(1)求椭圆的方程;
(2)求面积最大值.
某公司为招聘新员工设计了一个面试方案:应聘者从道备选题中一次性随机抽取
道题,按照题目要求独立完成.规定:至少正确完成其中
道题的便可通过.已知
道备选题中应聘者甲有
道题能正确完成,
道题不能完成;应聘者乙每题正确完成的概率都是
,且每题正确完成与否互不影响.
(1)分别求甲、乙两人正确完成面试题数的分布列,并计算其数学期望;
(2)请分析比较甲、乙两人谁的面试通过的可能性大?
已知函数.
(1)求的值;
(2)当时,求
的取值范围.
已知函数.
(1)当时,求曲线
在点
处的切线方程;
(2)求函数的单调区间;
(3)若对任意的都有
恒成立,求实数
的取值范围.
已知数列的前
项和为
,
,且
(
为正整数)
(1)求数列的通项公式;
(2)对任意正整数,是否存在
,使得
恒成立?若存在,求是实数
的最大值;若不存在,说明理由.
已知直线与椭圆
相交于
两点,点
是线段
上的一点,
且点
在直线
上.
(1)求椭圆的离心率;
(2)若椭圆的焦点关于直线的对称点在单位圆
上,求椭圆的方程.