游客
题文

如图所示,在△BAC中,AB=AC,以AB为直径的⊙O交AB于点M,MN⊥AC于点N,

(1)求证MN是⊙O的切线;
(2)若∠BAC=120°,AB=2,求图中阴影部分的面积。

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理
登录免费查看答案和解析
相关试题

抛物线 y = x 2 - 1 x 轴于 A B 两点 ( A B 的左边).

(1) ACDE 的顶点 C y 轴的正半轴上,顶点 E y 轴右侧的抛物线上;

①如图(1),若点 C 的坐标是 ( 0 , 3 ) ,点 E 的横坐标是 3 2 ,直接写出点 A D 的坐标.

②如图(2),若点 D 在抛物线上,且 ACDE 的面积是12,求点 E 的坐标.

(2)如图(3), F 是原点 O 关于抛物线顶点的对称点,不平行 y 轴的直线 l 分别交线段 AF BF (不含端点)于 G H 两点.若直线 l 与抛物线只有一个公共点,求证: FG + FH 的值是定值.

问题提出

如图(1),在 ΔA BC ΔDEC 中, ACB = DCE = 90 ° BC = AC EC = DC ,点 E ΔABC 内部,直线 AD BE 于点 F .线段 AF BF CF 之间存在怎样的数量关系?

问题探究

(1)先将问题特殊化如图(2),当点 D F 重合时,直接写出一个等式,表示 AF BF CF 之间的数量关系;

(2)再探究一般情形如图(1),当点 D F 不重合时,证明(1)中的结论仍然成立.

问题拓展

如图(3),在 ΔABC ΔDEC 中, ACB = DCE = 90 ° BC = kAC EC = kDC ( k 是常数),点 E ΔABC 内部,直线 AD BE 交于点 F .直接写出一个等式,表示线段 AF BF CF 之间的数量关系.

在“乡村振兴”行动中,某村办企业以 A B 两种农作物为原料开发了一种有机产品. A 原料的单价是 B 原料单价的1.5倍,若用900元收购 A 原料会比用900元收购 B 原料少 100 kg .生产该产品每盒需要 A 原料 2 kg B 原料 4 kg ,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.

(1)求每盒产品的成本(成本 = 原料费 + 其他成本);

(2)设每盒产品的售价是 x ( x 是整数),每天的利润是 w 元,求 w 关于 x 的函数解析式(不需要写出自变量的取值范围);

(3)若每盒产品的售价不超过 a ( a 是大于60的常数,且是整数),直接写出每天的最大利润.

如图, AB O 的直径, C D O 上两点, C BD ̂ 的中点,过点 C AD 的垂线,垂足是 E .连接 AC BD 于点 F

(1)求证: CE O 的切线;

(2)若 DC DF = 6 ,求 cos ABD 的值.

如图是由小正方形组成的 5 × 7 网格,每个小正方形的顶点叫做格点,矩形 ABCD 的四个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.

(1)在图(1)中,先在边 AB 上画点 E ,使 AE = 2 BE ,再过点 E 画直线 EF ,使 EF 平分矩形 ABCD 的面积;

(2)在图(2)中,先画 ΔBCD 的高 CG ,再在边 AB 上画点 H ,使 BH = DH

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号