(本小题满分14分)设函数(
),
.
(Ⅰ)令,讨论
的单调性;
(Ⅱ)关于的不等式
的解集中的整数恰有3个,求实数
的取值范围;
(Ⅲ)对于函数与
定义域上的任意实数
,若存在常数
,使得
和
都成立,则称直线
为函数
与
的“分界线”.设
,
,试探究
与
是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.
画出计算的程序框图,并写出相应的程序.
已知三角形ABC的顶点坐标为A(-1,5)、B(-2,-1)、C(4,3),M是BC边上的中点.
(1)求AB边所在的直线方程;
(2)求中线AM的长
(3)求AB边的高所在直线方程.
已知动点M到点A(2,0)的距离是它到点B(8,0)的距离的一半,
求:(1)动点M的轨迹方程;
(2)若N为线段AM的中点,试求点N的轨迹.
(本小题满分14分)
已知函数的单调递增区间为
,
(Ⅰ)求证:;
(Ⅱ)当取最小值时,点
是函数
图象上的两点,若存在
使得
,求证:
(本小题满分14分)
如图:某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道
,
是直角顶点)来处理污水,管道越短,铺设管道的成本越低.设计要求管道的接口
是
的中点,
分别落在线段
上。已知
米,
米,记
。
(Ⅰ)试将污水净化管道的长度表示为
的函数,并写出定义域;
(Ⅱ)若,求此时管道的长度
;
(Ⅲ)问:当取何值时,铺设管道的成本最低?并求出此时管道的长度。