某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为
(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为2万元(总成本=固定成本+生产成本).销售收入
(万元)满足
,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:
(1)写出函数的解析式;
(2)写出利润函数的解析式(利润=销售收入—总成本);
(3)工厂生产多少台产品时,可使盈利最多?
已知全集合,
,
,若
,试确定实数
的取值范围.
已知a>0,b>0,且a+b=1,求证:+
≤2.
设.
(1)当时,
≤3,求
的取值范围;
(2)若对任意的,
恒成立,求实数
的最小值.
已知圆的参数方程为
(
为参数),以坐标原点
为极点,
轴的正半轴为极轴建立极坐标系,圆
的极坐标方程为
.
(1)将圆的参数方程化为普通方程,将圆
的极坐标方程化为直角坐标方程;
(2)圆,
是否相交,若相交,请求出公共弦的长;若不相交,请说明理由.
在直角坐标系中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C1
的极坐标方程为,曲线C2的直角坐标方程为
.
(1)求曲线C1的直角坐标方程;
(2)已知为曲线C2上一点,Q为曲线C1上一点,求P、Q两点间距离的最小值.