游客
题文

分解因式:a2(x-y)2-b2(y-x)2

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

将正方形 ABCD 的边 AB 绕点 A 逆时针旋转至 AB ' ,记旋转角为 α ,连接 BB ' ,过点 D DE 垂直于直线 BB ' ,垂足为点 E ,连接 DB ' CE

(1)如图1,当 α = 60 ° 时, ΔDEB ' 的形状为   ,连接 BD ,可求出 BB ' CE 的值为  

(2)当 0 ° < α < 360 ° α 90 ° 时,

①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由;

②当以点 B ' E C D 为顶点的四边形是平行四边形时,请直接写出 BE B ' E 的值.

小亮在学习中遇到这样一个问题:

如图,点 D BC ̂ 上一动点,线段 BC = 8 cm ,点 A 是线段 BC 的中点,过点 C CF / / BD ,交 DA 的延长线于点 F .当 ΔDCF 为等腰三角形时,求线段 BD 的长度.

小亮分析发现,此问题很难通过常规的推理计算彻底解决,于是尝试结合学习函数的经验研究此问题.请将下面的探究过程补充完整:

(1)根据点 D BC ̂ 上的不同位置,画出相应的图形,测量线段 BD CD FD 的长度,得到下表的几组对应值.

BD / cm

0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

CD / cm

8.0

7.7

7.2

6.6

5.9

a

3.9

2.4

0

FD / cm

8.0

7.4

6.9

6.5

6.1

6.0

6.2

6.7

8.0

操作中发现:

①“当点 D BC ̂ 的中点时, BD = 5 . 0 cm ”.则上表中 a 的值是 5.0 

②“线段 CF 的长度无需测量即可得到”.请简要说明理由.

(2)将线段 BD 的长度作为自变量 x CD FD 的长度都是 x 的函数,分别记为 y CD y FD ,并在平面直角坐标系 xOy 中画出了函数 y FD 的图象,如图所示.请在同一坐标系中画出函数 y CD 的图象;

(3)继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当 ΔDCF 为等腰三角形时,线段 BD 长度的近似值(结果保留一位小数).

如图,抛物线 y = - x 2 + 2 x + c x 轴正半轴, y 轴正半轴分别交于点 A B ,且 OA = OB ,点 G 为抛物线的顶点.

(1)求抛物线的解析式及点 G 的坐标;

(2)点 M N 为抛物线上两点(点 M 在点 N 的左侧),且到对称轴的距离分别为3个单位长度和5个单位长度,点 Q 为抛物线上点 M N 之间(含点 M N ) 的一个动点,求点 Q 的纵坐标 y Q 的取值范围.

我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.人们根据实际需要,发明了一种简易操作工具 - - 三分角器.图1是它的示意图,其中 AB 与半圆 O 的直径 BC 在同一直线上,且 AB 的长度与半圆的半径相等; DB AC 垂直于点 B DB 足够长.

使用方法如图2所示,若要把 MEN 三等分,只需适当放置三分角器,使 DB 经过 MEN 的顶点 E ,点 A 落在边 EM 上,半圆 O 与另一边 EN 恰好相切,切点为 F ,则 EB EO 就把 MEN 三等分了.

为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.

已知:如图2,点 A B O C 在同一直线上, EB AC ,垂足为点 B   

求证:  

暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.

方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;

方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.

设某学生暑期健身 x (次 ) ,按照方案一所需费用为 y 1 (元 ) ,且 y 1 = k 1 x + b ;按照方案二所需费用为 y 2 (元 ) ,且 y 2 = k 2 x .其函数图象如图所示.

(1)求 k 1 b 的值,并说明它们的实际意义;

(2)求打折前的每次健身费用和 k 2 的值;

(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号