(本小题满分14分).
求倾斜角是直线y=-x+1的倾斜角的
,且分别满足下列条件的直线方程:
(1)经过点(,-1);
(2)在y轴上的截距是-5.
如图,四面体ABCD中,O是BD的中点,CA=CB=CD=BD=2,AB=AD=。
(1)求证:AO⊥平面BCD;
(2)求E到平面ACD的距离;
(3)求异面直线AB与CD所成角的余弦值。
如图,有三个并排放在一起的正方形,.
(1)求的度数;
(2)求函数的最大值及取得最大值时候的x值。
掷两枚骰子,记事件A为“向上的点数之和为n”.
(1)求所有n值组成的集合;
(2)n为何值时事件A的概率P(A)最大?最大值是多少?
(3)设计一个概率为0.5的事件(不用证明)
(本小题满分12分)
设函数
(Ⅰ)求的单调区间;
(Ⅱ)当时,设
的最小值为
恒成立,求实数t的取值范围.
(本小题满分12分)
已知椭圆上任一点P,由点P向x轴作垂线段PQ,垂足为Q,点M在PQ上,且
,点M的轨迹为C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(0,-2)作直线l与曲线C交于A、B两点,设N是过点且平行于
轴的直线上一动点,满足
(O为原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线的方程;若不存在说明理由.