如图,平面直角坐标系的单位是厘米,直线AB的解析式为y=x-6
,分别与x 轴y轴相交于A、B 两点.动点C从点B出发沿射线BA以3cm/秒的速度运动,以C点为圆心作半径为1cm的⊙C.
(1)求A、B两点的坐标;
(2)设⊙C运动的时间为t,当⊙C和坐标轴相切时,求时间t的值.
(3)在点C运动的同时,另有动点P以2cm/秒的速度在线段OA上来回运动,过点P作直线l垂直于x轴.若点C与点P同时分别从点B、点O开始运动,求直线l与⊙C所有相切时点P的坐标.
如图,四边形ABCD中,点E在边CD上,连结AE、BE.给出下列五个关系式:①AD∥BC;②DE=CE;③∠1=∠2;④∠3=∠4;⑤AD+BC=AB.将其中的三个关系式作为题设,另外两个作为结论,构成一个命题.
⑴用序号写出一个真命题(书写形式如:如果×××,那么××);并给出证明;
⑵用序号再写出三个真命题(不要求证明)
如图,在等腰梯形ABCD中,AB∥CD,AC、BD是对角线,将△ABD沿AB向下翻折到△ABE的位置,试判定四边形AEBC的形状,并证明你的结论.
如图,等腰梯形ABCD中,AD∥B,AB=CD,DE⊥BC于E,AE=BE,BF⊥AE于F,线段BF与图中的哪一条线段相等.先写出你的猜想,再加以证明
如图,等腰梯形ABCD中,AD//BC,AD=3,AB=4,BC=7,求∠B的度数.
如图,梯形ABCD中,AB//CD,AD=BC,延长AB到E,使BE=DC,连结AC、CE.求证AC=CE.