(本小题满分12分)为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8∶00~12∶00间各自的车流量(单位:百辆),得如图所示的统计图,试求:
(1)甲、乙两个交通站的车流量的极差分别是多少?
(2)甲交通站的车流量在间的频率是多少?
(3)根据该茎叶图结合所学统计知识分析甲、乙两个交通站哪个站更繁忙?并说明理由.
设函数
(1)求函数的值域和函数的单调递增区间;
(2)当,且
时,求
的值.
已知关于的函数
,其导函数为
.记函数
在区间
上的最大值为
.
(1) 如果函数在
处有极值
,试确定
的值;
(2) 若,证明对任意的
,都有
;
(3) 若对任意的
恒成立,试求
的最大值.
椭圆的离心率为
,其左焦点到点
的距离为
.
(1) 求椭圆的标准方程;
(2) 若直线与椭圆
相交于
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点,求证:直线
过定点,并求出该定点的坐标.
已知数列中,
,前
项和
.
(1) 求数列的通项公式;
(2) 设数列的前
项和为
,是否存在实数
,使得
对一切正整数
都
成立?若存在,求出的最小值;若不存在,请说明理由.
如图,在直三棱柱中,平面
侧面
,且
(1) 求证:;
(2) 若直线与平面
所成的角为
,求锐二面角
的大小。