(本小题满分15分)过曲线C:外的点A(1,0)作曲线C的切线恰有两条,
(Ⅰ)求满足的等量关系;
(Ⅱ)若存在,使
成立,求
的取值范围.
设正数数列为等比数列,
,记
.
(1)求和
;
(2)证明: 对任意的,有
成立.
给出四个等式:
(1)写出第个等式,并猜测第
(
)个等式;
(2)用数学归纳法证明你猜测的等式.
同时抛掷4枚均匀的硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为.
(1)求抛掷4枚硬币,恰好2枚正面向上,2枚反面向上的概率;
(2)求的数学期望和方差.
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数![]() |
2 |
3 |
4 |
5 |
加工的时间![]() |
2.5 |
3 |
4 |
4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出关于
的线性回归方程
,并在坐标系中画出回归直线;
(3)试预测加工个零件需要多少时间?
参考公式:回归直线,其中
.
一个布袋里有3个红球,2个白球共5个球. 现抽取3次,每次任意抽取2个,并待放回后再抽下一次.求:
(1)3次抽取中,每次取出的2个球都是1个白球和1个红球的概率;
(2)3次抽取中,有2次取出的2个球是1个白球和1个红球,还有1次取出的2个球同色的概率.