某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
|
文艺节目 |
新闻节目 |
总计 |
20至40岁 |
40 |
10 |
50 |
大于40岁 |
20 |
30 |
50 |
总计 |
60 |
40 |
100 |
(1)由表中数据检验,有没有99.9%把握认为收看文艺节目的观众与年龄有关?
(2)20至40岁,大于40岁中各抽取1名观众,求两人恰好都收看文艺节目的概率.
P(k2>k) |
0.50 |
0.40 |
0.25 |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k |
0.455 |
0.708 |
1.323 |
2.072 |
2.706 |
3.84 |
5.024 |
6.635 |
7.879 |
10.83 |
如图,在直三棱柱中,平面
侧面
且
.
(Ⅰ)求证:;
(Ⅱ)若直线AC与平面所成的角为
,求锐二面角
的大小.
生产,
两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 |
![]() |
![]() |
![]() |
![]() |
![]() |
元件![]() |
8 |
12 |
40 |
32 |
8 |
元件![]() |
7 |
18 |
40 |
29 |
6 |
(Ⅰ)试分别估计元件、元件
为正品的概率;
(Ⅱ)生产一件元件,若是正品可盈利50元,若是次品则亏损10元;生产一件元件
,若是正品可盈利100元,若是次品则亏损20元,在(Ⅰ)的前提下
(i)求生产5件元件所获得的利润不少于300元的概率;
(ii)记为生产1件元件
和1件元件
所得的总利润,求随机变量
的分布列和期望.
【改编题】在△ABC中,己知 ,
,又△ABC的面积为6
(Ⅰ)求△ABC的三边长;
(Ⅱ)若D为BC边上的一点,且CD=1,求 .
已知椭圆:
的离心率为
,过椭圆
右焦点
的直线
与椭圆
交于点
(点
在第一象限).
(Ⅰ)求椭圆的方程;
(Ⅱ)已知为椭圆
的左顶点,平行于
的直线
与椭圆相交于
两点.判断直线
是否关于直线
对称,并说明理由.
已知圆的圆心在直线
上,且与
轴交于两点
,
.
(Ⅰ)求圆的方程;
(Ⅱ)求过点的圆
的切线方程;
(Ⅲ)已知,点
在圆
上运动,求以
,
为一组邻边的平行四边形的另一个顶点
轨迹方程.