游客
题文

某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:

 
文艺节目
新闻节目
总计
20至40岁
40
10
50
大于40岁
20
30
50
总计
60
40
100

(1)由表中数据检验,有没有99.9%把握认为收看文艺节目的观众与年龄有关?
(2)20至40岁,大于40岁中各抽取1名观众,求两人恰好都收看文艺节目的概率.
 

P(k2>k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
  k
0.455
0.708
1.323
2.072
2.706
3.84
5.024
6.635
7.879
10.83
科目 数学   题型 解答题   难度 容易
登录免费查看答案和解析
相关试题

、已知向量>0,设函数的周期为,且当时,函数取最大值2.
(1)、求的解析式,并写出的对称中心.(2)、当时,求的值域

设函数,其中.
(Ⅰ)若,求上的最小值;
(Ⅱ)如果在定义域内既有极大值又有极小值,求实数的取值范围;
(Ⅲ)是否存在最小的正整数,使得当时,不等式恒成立.

(13分)在中学阶段,对许多特定集合(如实数集、复数集以及平面向量集等)的学习常常是以定义运算(如四则运算)和研究运算律为主要内容.现设集合由全体二元有序实数组组成,在上定义一个运算,记为,对于中的任意两个元素,,规定:.
(1)计算:;
(2)请用数学符号语言表述运算满足交换律,并给出证明;
(3)若“中的元素”是“对,都有成立”的充要条件,试求出元素.

已知的展开式中,第项的系数与第项的系数之比是10:1,求展开式中,
(1)含的项;
(2)系数最大的项.

(本小题满分12分)
盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得-1分 . 现从盒内任取3个球
(Ⅰ)求取出的3个球中至少有一个红球的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)设为取出的3个球中白色球的个数,求的分布列和数学期望.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号