游客
题文

(12分)抛物线的顶点在坐标原点,焦点在轴的负半轴上,过点作直线与抛物线交于A,B两点,且满足,
(1)求抛物线的方程
(2)当抛物线上的一动点P从A运动到B时,求面积的的最大值.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

如图,α⊥β,α∩β=lA∈α, B∈β,点A在直线l上的射影为A1, 点Bl的射影为B1,已知AB=2,AA1=1, BB1=, 求:
(Ⅰ) 直线AB分别与平面α,β所成角的大小;
(Ⅱ)二面角A1ABB1的余弦值.

(本小题满分12分)甲有一个装有个红球、个黑球的箱子,乙有一个装有个红球、个黑球的箱子,两人各自从自己的箱子里任取一球,并约定:所取两球同色时甲胜,异色时乙胜().
(Ⅰ)当,时,求甲获胜的概率;
(Ⅱ)当时,规定:甲取红球获胜得3分;取黑球获胜得1分;甲负得0分.求甲的得分期望达到最大时的值;
(Ⅲ)当时,这个游戏规则公平吗?请说明理由.

(本小题满分12分) 已知向量.
(1)若求向量的夹角;
(2)当时,求函数的最大值。

(本小题满分14分)已知函数.
(Ⅰ)当时,求曲线处的切线方程;
(Ⅱ)求函数在区间上的最小值;
(Ⅲ)若关于的方程在区间内有两个不相等的实数根,求实数a的取值范围.

(本小题满分14分)数列的各项均为正数,为其前项和,对于任意,总有成等差数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列的前项和为,且,求证:对任意实数是常数,=2.71828)和任意正整数,总有2;
(Ⅲ) 已知正数数列中,.,求数列中的最大项.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号